
PC-Sonar User Guide
Klaus von der Heide, DJ5HG

1.  General

PC-Sonar is a program running on a PC with soundcard plus speaker and microphone. It allows 
some simple sonar experiments without additional hardware. The program is written in Matlab. It is 
compiled by the Matlab Compiler. 

2. Requirements

(a) To run the program  pcsonar.exe  the Matlab Compiler Rumtime (MCR)  must be installed.
(b) pcsonar.exe  runs on all Windows systems later than  Win98 and on 32 bit and 64 bit versions.
(c) The soundcard must support the samplerate 48000.
(d) The sampling of sound output and sound input must be coherent, i.e. the samplerates must      

exactly be the same. If different soundcards are used for input and output, this is not the case. 
But even the same soundcard sometimes uses different rates for input and output.

3. The Main Window

PC-Sonar starts with a simple window which allows selection of 
the desired experiment. Pushing the help button to the right of an 
option displays specific help.  



4. The Sonar Types

PC-Sonar supports four different sonar experiments, which are explained in the following chapters.
All these experiments have one feature in common:

Unfortunately, the sound input and output usually cannot be started precisely enough. This leads to 
a considerable uncertainty of the delay between outgoing and incoming samples. Therefore only 
relative distances between detected targets are precise. The absolute distance must be calibrated 
once after start of the program. This is done the same way in all experiments:

(a) Select the window of the desired sonar.
(b) Fix a target at a known distance from the left speaker, such that it causes a clear peak. 
(c) Now click with the mouse on the peak, drag the mouse (while pressing the mouse) to the 

correct position on the horizontal distance scale. 
(d) Release the mouse button. The peak should move now to the new position. This procedure can 

be repeated whenever you want, but a single calibration should be sufficient. 

Also a basic control by key presses is common to all sonars: 
A press of c or C clears the history of the averaging process.
A press of s or S stops the sonar application. The figures remain on the screen. 

Distances measured by a 
sonar are proportional to the 
speed of the sound. It is 
dependent on the air 
temperature as shown here. 
Therefore the parameter air  
temperature should be 
specified in the four 
experiments to improve 
precision.

Especially the CW-sonar 
sees temperature differences 
as low as 0.5°C over a 
distance of 5 m.



4.1. Chirp Sonar

The chirp sonar determines the distance of targets from the microphone and the left speaker, which 
are assumed to be at the same location. The range may arbitrarily be chosen. If there are targets 
beyond the range, their distance is estimated to  (real distance) modulo (actual range setting). 

The speaker transmits a tone with raising frequency starting at  f1  and ending at  f2 . This is a 
socalled chirp. The length of the chirp is twice the time the sound needs to reach the range. The 
signal received by the microphone has a propagation delay proportional to the distance of the 
reflecting target. Therefore the reflected signal has a lower frequency than the actual frequency of 
the chirp. The frequency difference is proportional to the distance of the target.  

The edge frequencies  f1  and  f2  should be chosen 
as large as possible, because targets can be detected 
only if they are larger than the wavelength of the 
frequency, which is given by the quotient (speed of  
sound in air)/(frequency).  It is 3.5 cm at 10 kHz. On 
the other hand, the resolution is proportional to the 
difference of both edge frequencies. 

The received signal is shifted to baseband using the chirp as the carrier. This maps the frequency 
differences to absolute frequencies. The spectrum of the baseband signal is displayed using the 
distance of the targets as the abscissa. 

The chirp sonar scan to the left shows 
the author's office. A door at about 
5m distance is opened such that it 
gives a good echo, and a small rule is 
held at a distance of 1 m. The peak at 
1.08m is the hand of the author, and 
the peak at 0.8m is groundreflection 
from the floor. All other smaller 
echoes are from unknown sources. 
Everything beyond 6m is from 
multiple reflections.



In addition to the basic control by keypresses,  a press of m or M toggles the display mode between 
static display and dynamic display of changes. 

The Mathematics of the Chirp Sonar

The Chirp

The phase of a constant carrier is a linear function of time  t :    φ = ω t 
The phase of a linear chirp is a quadratic function of time  t :     φ = ω t + q t2

The generated complex signal is given by                                    x = exp(i φ)

The Transmitted and the Received Signal

Only the real part of the generated signal  x  is sent. 
The signal propagates through the air at the soundspeed  c.  
The propagation path may be  s.  
Then the signal is received after a pathdelay of  Δt=s/c.
The imaginary part of the received signal is reconstructed from the received real part, but with 
negative sign.  This complex signal is the complex conjugate of   x(t – Δt):
y = conj( x(t – Δt) ).

The Chirp-Sonar Algorithm

z = x y = exp(i (ω t + q t2) ) exp(–i (ω (t – Δt) + q (t – Δt)2) ) = exp(i (ω Δt – q Δt2  + 2q Δt t ) ).

Separation of the constant factor    a = exp(i (ω Δt – q Δt2 ) )   and replacement of  Δt  by  Δt=s/c 
leads to

z =   a  exp(i Ω t )   with   Ω = 2q s/c .

Thus  z  is a wave of angular velocity Ω, which is proportional to the length of the propagation path 
s . Therefore, the spectrum of  z  indicates all targets by corresponding peaks. The angular velocities 
of the spectrum only must be mapped to distances by   s = c Ω / (2q) .

The Implementation

The signal processing loop of the Matlab program directly follows the above algorithm. But of 
course, it adds some technical features for 
(a) communication with the soundcard 
(b) calibration of the timing between input and output
(c) noise reduction by a highpass filter
(d) noise reduction by a pulse-blanker
(e) graphical output

The main parts of the above algoritm are highlighted in the following signal processing loop of the 
program by yellow background.



Colored words are:
while key words of the Matlab languge
filter standard functions of Matlab including the Signal Processing Toolbox
% FFT comments
Program-specific objects and variables are in black. They are declared outside of this central loop.

 
  while run
      cnt = cnt + 1;
      rxsig = getdata(ai,n)';                    % wait for n input samples
      putdata(ao,txdat);                         % output chirp data
      
      % distance calibration
      rxsig = rxsig([shiftindex:end 1:shiftindex-1]);
      
      % high pass filter
      [rxh,hps] = filter(hp,1,rxsig,hps);
      
      % noise blanker
      st  = std(rxh);                            % standard deviation of signal
      if clr || cnt<10
         mst = st;
         clr = 0;
      else
         mst = relax*st + (1-relax)*mst;         % simple IIR filter for standard deviation
      end
      rxh(abs(rxh)>3*mst) = 0;                   % blank all samples > 3*standard deviation
      
      % Hilbert filter                                                                            
      [rxi,hst] = filter(bh,1,rxh,hst);          % Hilbert filter                                 
      rxa = [rst rxh(1:nd)] - 1i*rxi;            % analytical signal                              
      rst = rxh(nd+1:n);                         % state of real shift filter                     

      % shift to baseband                                                                         
      v   = txa.*rxa;                            % spectral rotation into baseband                
      
      % filter
      [w,lps] = filter(b,a,v,lps);               % lowpass filter
      
      % distance
      sp  = fft(w.*hgn);                         % FFT                                            
      yd  = abs(sp(1:mi));                       % echo of actual transmission                    
      yr  = abs(sp(end-mi+1:end));               % echo of previous transmission                  
      if clr
         ym  = yd + yr;                          % actual echo
         clr = 0;
      else
         ym  = relax*(yd+yr) + (1-relax)*ym;     % mean echo                                      
      end
      
      % scaling
      scl = 1/mean(ym);
      mxy = max(ym);
      if scl*mxy>5
         scl = 5/mxy;
      end
            
      % display
      if mde
         set(ls,'XData',(1:length(ym))*m_pro_bin,'YData',scl*(yd+yr-ym)) % update difference
      else
         set(ls,'XData',(1:length(ym))*m_pro_bin,'YData',scl*ym) % update mean echo
      end
   end



4.2 Code Sonar

This sonar determines the distance of targets from the microphone and the left speaker, which are 
assumed to be at the same location. 

The speaker transmits a sequence of bits modulated on the carrier according to your choice. The 
length of this sequence is determined from the parameter  minrange.  As in a radar system, it is 
assumed here, that the receiver (the microphone) cannot listen at its intrinsic sensitivity, while the 
transmitter is sending. Although, other than in a radar system, different antennas (the speaker and 
the microphone are used, we introduce this parameter  minrange  to specify the length of the code 
sequence. 

The code is chosen such that it has small autocorrelation. If  minrange=maxrange  Hadamard codes 
are used because of their optimal properties in that special case of permanent transmission. 

The signal received by the microphone is correlated with the transmitted code. This correlation 
signal is displayed over the distance of targets leading to peaks in this diagram. 

To the left the 
echo of two 
buildings at a 
distance slightly 
larger than 150 m 
from the author's 
home. 



In addition to the basic control by keypresses,  a press of b or B pops up a display with the actual 
binary code.

The signal processing loop of the Matlab program is as follows:

Colored words are:
while key words of the Matlab languge
filter standard functions of Matlab including the Signal Processing Toolbox
% FFT comments
Program-specific objects and variables are in black. They are declared outside of this central loop.

   while run
      
      % sampling
      putdata(ao,txsig);               % output tx signal
      rxs = getdata(ai,cycl);          % wait for cycle input samples
      
      % Hilbert filter
      [rxi,hst] = filter(bh,1,rxs,hst);% Hilbert filter 
      rxa = [rst; rxs(1:nd)] + 1i*rxi; % analytical signal
      rst = rxs(nd+1:cycl);            % state of real shift filter
      
      % shift to baseband
      x  = car.*rxa;                   % spectral rotation into baseband
      
      % decimation 1/4
      [xl,lps] = filter(lp,1,x,lps);   % decimation filter
      xd = xl(1:4:end);                % decimation
      
      % correlation
      if nbit>1
         if mode==1                    % case of PSK modulation
            [y,crs] = filter(cdr,1,xd,crs); % correlation filter
            yd = abs(y);
         else                          % case of ASK modulation
            ax = abs(xd);              % signal amplitude
            ax = ax - mean(ax);        % signal deviation from mean
            [y,crs] = filter(cdr,1,ax,crs); % correlation filter
            yd = abs(y);
         end
      else
         yd = abs(xd);                 % case of single pulse
      end
      
      % distance calibration
      yd = yd([shiftindex:end 1:shiftindex-1]); % rotate vector by shiftindex
      
      % graphic
      if clr
         ym  = relax*yd;               % clear mean echo
         clr = 0;
      else
         ym  = relax*yd + (1-relax)*ym;% simple IIR filter
      end
      yym = max(ym);
      set(lm,'YData',ym/yym)           % update graphic of echo
      
   end % while run



4.3. CW Sonar

This is a high-precision sonar which determines the distance of  the mono-microphone from the left 
speaker at an accuracy better than one millimeter.

The principle is simple: The speaker transmits a continuous wave of frequency f0. The phase 
difference between transmitted and received waves is determined and transformed to distance.
The distance is displayed numerically and graphically by a rotating pointer.  

The zero-distance must be calibrated. This is done by starting the program with the microphone at 
position zero directly at the speaker.

The frame rate at which the phase is measured is 46.875 per second. The phase must not change by 
more than π within one frame. This limits the allowed speed of the microphone to about 
8000/(carrier frequency).  Example: carrier 12000 Hz => maxspeed = 0.666 m/s. If this maximal 
velocity is exceeded, the calibration of zero distance will be lost. Be aware that 0.67 m/s is a very 
slow motion. If you want to tolerate higher speeds, the carrier frequency must be lower.
 
Multiple CW-sonars can be used simultaneously by setting the number of carriers to values larger 
than 1. In this case the large pointer (and the numerical display) show the average distance 
determined from all carriers. Additionally all individual distances are displayed by smaller colored 
pointers. If these differ considerable, the zero calibration obviously is lost at least for one 
of the carriers.

On the left side 
a CW-sonar 
with a single 
carrier, on the 
right side three 
carriers are 
used.



The Mathematics of the CW Sonar

The Chirp

The phase of a constant carrier is a linear function of time  t :    φ = ω t 
The generated complex signal is given by                                    x = exp(i φ)

The Transmitted and the Received Signal

Only the real part of the generated signal  x  is sent. 
The signal propagates through the air at the soundspeed  c.  
The propagation path may be  s.  
Then the signal is received after a pathdelay of  Δt=s/c.
The imaginary part of the received signal is reconstructed from the received real part, but with 
negative sign.  This complex signal is the complex conjugate of   x(t – Δt):
y = conj( x(t – Δt) ).

The CW-Sonar Algorithm

z = x y = exp(i ω t) exp(–i ω (t – Δt) ) = exp(i ω Δt).

Thus  the phase  ψ = ω Δt = ω s/c  of  z  is proportional to the length of the propagation path  s . 
Therefore, the distance can be computed by  s =  c ψ/ω . The main problem is that the phase only is 
known modulo 2π.  This makes it necessary to start at zero-distance and to move slowly to any 
other distance such that the phase is a continuous function of time.

The Implementation

The signal processing loop of the Matlab program directly follows the above algorithm. But of 
course, it adds some technical features for 
(a) communication with the soundcard 
(b) noise reduction by a multirate lowpass filter
(c) accumulating the phase
(d) graphical output

The main parts of the above algoritm are highlighted in the following signal processing loop of the 
program by yellow background.

The signal processing loop of the Matlab program (one carrier) is as follows:



Colored words are:
while key words of the Matlab languge
filter standard functions of Matlab including the Signal Processing Toolbox
% FFT comments
Program-specific objects and variables are in black. They are declared outside of this central loop.

4.4. Position Sonar

This sonar determines the position of the mono-microphone in the plane defined by the microphone 
and the two stereo speakers.

   while run
      rxs  = getdata(ai,blk);             % wait for blk input samples
      putdata(ao,txs);                    % output chirp data
      [rxi,hst] = filter(bh,1,rxs,hst);   % Hilbert filter
      rxa  = [rst; rxs(1:nd)] - 1i*rxi;   % analytical signal
      rst  = rxs(nd+1:blk);               % state of real shift filter
      x{1} = txa.*rxa;                    % spektral rotation into baseband
      for k=1:n                           % simple multirate lowpass filter
         x{k+1} = 0.5*x{k}(1:2:end-1) + 0.25*([xs(k); x{k}(2:2:end-2)] + x{k}(2:2:end));
         xs(k)  = x{k}(end);              % save last sample for next loop cycle
      end
      p   = angle(xs(n));                 % actual phase
      if cnt<3                            % 3 frames to set the starting position 
         sp = 0;                          % start with zero phase sum
      else
         dp  = p - lp;                    % phase motion since last block
         if dp>pi                         % only -pi < dp < pi allowed
            dp = dp - 2*pi;
         elseif dp<-pi
            dp = dp + 2*pi;
         end
         sp  = sp + dp;                   % sum of phase motions since program start
      end
      d   = -sp*cs/(2*pi*fc);             % actual distance between speaker and microphone
      lp  = p;                            % save actual phase
      cnt = cnt + 1;                      % block counter
 
      if get(ai,'SamplesAvailable')<blk
         set(th,'String',[' ' num2str(d,' %8.4f m')]) % update distance
         amp = max(abs(x{n+1}));          % scaling factor
         set(lh,'XData',[0; real(x{n+1}/amp); 0],'YData',[0; -imag(x{n+1}/amp); 0]) % graphic 
      end
   end



Both speakers transmit different Hadamard codes modulated on the same carrier frequency. The 
signal received by the microphone is correlated with both codes. These correlation signals are 
displayed in the window named Correlation Signals. The red and green lines horizontally show the 
distance between the microphone and the left resp. the right speaker.

The window named Position Sonar displays the spacial room of the experiment. There are two 
markers at the top which correspond to the speakers. The white grid defines the room coordinates in 
meters. All peaks of the other figure are shown here as arcs around the speakers with the 
corresponding distance as their radius. The luminosity is the product of both correlation signals. 
Possible positions of the microphone are colored red. A low base distance of the two speakers leads 
to a considerable angular uncertainty while the radial distance is well defined (see upper figure). 

The calibration of the distance as described above must be done individually for the left speaker and 
the right speaker.

In addition to the basic control by keypresses,  a press of b or B pops up displays with the actual 
binary Hadamard codes.

The technical implementation is the same as in the  code sonar.  But two different codes with 
similar lengths are used on the two speakers, and the receiver correlates with these two codes to get 
the two different distances. 


